姓名:闫超 性别:男 职务:
职称:特聘副研究员 导师类别: 办公室:ylzzcom永利总站线路检测2-515
研究领域:深度强化学习、多智能体强化学习、无人机集群协同控制
电话:13852035093 Email:yanchao@nuaa.edu.cn
个人简介:
闫超,男,江苏沛县人,2023年12月博士毕业于国防科技大学智能科学学院,次年加入ylzzcom永利总站线路检测。主要从事固定翼无人机集群强化学习协同控制方向的研究工作,在IEEE TNNLS、IEEE TII、IEEE TWC、IEEE TIV、IEEE TCDS、IEEE/RSJ IROS、《航空学报》《控制理论与应用》等国内外知名学术期刊或会议发表学术论文30余篇,申请/授权国家发明专利10余项。
教育经历
2013.09-2017.06,中国矿业大学, 电气工程及其自动化,学士
2017.09-2019.12,国防科技大学, 控制科学与工程,硕士
2020.03-2023.12,国防科技大学, 控制科学与工程,博士
2021.12-2022.12,南洋理工大学,控制科学与工程,联合培养
学术成果
[1] Yan C, Wang C, Xiang X, Low K H, Wang X, Xu X, Shen L. Collision- avoiding flocking with multiple fixed-wing UAVs in obstacle-cluttered environments: A task-specific curriculum-based MADRL approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. DOI: 10.1109/TNNLS.2023.3245124.
[2] Yan C, Xiang X, Wang C, Li F, Wang X, Xu X, Shen L. Population- specific curriculum-based MADRL for collision-free flocking with large-scale fixed-wing UAV swarms[J]. Aerospace Science and Technology, 2023, 133:108091.
[3] Yan C, Wang C, Xiang X, Lan Z, and Jiang Y. Deep reinforcement learning of collision-free flocking policies for multiple fixed-wing UAVs using local situation maps[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 1260-1270.
[4] Yan C, Xiang X, Wang C. Fixed-wing UAVs flocking in continuous spaces: A deep reinforcement learning approach[J]. Robotics and Autonomous Systems, 2020, 131: 103594.
[5] Yan C, Xiang X, Wang C. Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2020, 98(2): 297-309. (封面论文)
[6] Yan C, Low K H, Xiang X, Hu T, and Shen L. Attention-based population- invariant deep reinforcement learning for collision-free flocking with a scalable fixed-wing UAV swarm[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022: 13730-13736.
[7] Yan C, Xiang X, Wang C, Lan Z. Flocking and collision avoidance for a dynamic squad of fixed-wing UAVs using deep reinforcement learning [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021: 4738-4744.
[8] 闫超, 相晓嘉, 徐昕, 王菖, 周晗, 沈林成. 多智能体深度强化学习及其可扩展性与可迁移性研究综述[J]. 控制与决策, 2022, 37(12): 3083-3102. (封面论文, 当年热文)
[9] 相晓嘉,闫超*,王菖, 尹栋. 基于深度强化学习的固定翼无人机编队协调控制方法[J]. 航空学报, 2021, 42(4): 524009. (高影响力论文)